Reaction of fluorescein isothiocyanate with thiol and amino groups of sarcoplasmic ATPase.
نویسندگان
چکیده
Several model compounds containing thiol and/or amino groups (mercaptoethanol, glutathione, cysteine, ethanolamine, glycine) were studied with respect to their reactivity towards fluorescein isothiocyanate (followed spectrophotometrically at 504 and 412 nm), stability of product and long-wave absorption maximum of the fluorescein residue attached. Thiol groups reacted by far more readily than amino groups. A specific effect was observed with cysteine, indicating an intramolecular transfer of the fluorescein residue from SH to NH2. With sarcoplasmic vesicles both types of reactions were observed. The ratio of products, which can be distinguished by their different stabilities and absorption spectra, depended on the absence or presence of detergents. While with native vesicles the NH2 reaction predominated, with vesicles solubilized with sodium dodecylsulfate, octaethyleneglycol mono-n-dodecyl ether or 1-0-tetradecyl-propanediol-(1,3)-3-phosphorylcholine the SH reaction became prevailing. Already 0.35 mg sodium dodecylsulfate per mg protein were sufficient to give rise to dithiourethane formation exclusively. Excess fluorescein isothiocyanate reacted with several thiol groups of dodecylsulfate-solubilized vesicles. In the presence of ATP binding of fluorescein isothiocyanate to native vesicles was significantly reduced. Total blockage of the vesicular SH groups with N-ethyl-maleimide led to preparations that reacted with fluorescein isothiocyanate much more slowly, compared to native vesicles. Octaethyleneglycol mono-n-dodecyl ether or 1-0-tetradecyl-propanediol-(1,3)-3-phosphorylcholine in the assay accelerated the thioureide formation from N-ethylmaleimide modified vesicles, whereas sodium dodecylsulfate prevented it almost completely. Our results support the suggestion that one or several thiol groups in vicinity of the highly reactive lysyl residue might play a role in the fast specific reaction, which is only observed with intact native vesicles.
منابع مشابه
Competition between decavanadate and fluorescein isothiocyanate on the Ca2+-ATPase of sarcoplasmic reticulum.
The binding of vanadate and fluorescein isothiocyanate to the Ca2+-transport ATPase of sarcoplasmic reticulum (EC 3.6.1.3) was analyzed. Monovanadate binds to the Ca2+-transport ATPase at a single high affinity site (site 1), that is presumably related to the binding site for inorganic orthophosphate, and to one of the two sites for decavanadate. Binding of vanadate to this site stabilizes the ...
متن کاملNucleotide specificity of cardiac sarcoplasmic reticulum. Inhibition of GTPase activity by ATP analogue in fluorescein isothiocyanate-modified calcium ATPase.
Unlike skeletal muscle sarcoplasmic reticulum, canine cardiac sarcoplasmic reticulum hydrolyzes GTP in ways that are similar and different from ATP hydrolysis. Also, ATP and ATP analogues inhibit GTPase activity noncompetitively with a Ki compatible with the high affinity ATP-binding site (c.f. Tate, C.A., Bick, R.J., Blaylock, S., Youker, K., Scherer, N.M., and Entman, M.L. (1989) J. Biol. Che...
متن کاملHypochlorous acid inhibits Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum.
Hypochlorous acid (HOCl) is produced by polymorphonuclear leukocytes that migrate and adhere to endothelial cells as part of the inflammatory response to tissue injury. HOCl is an extremely toxic oxidant that can react with a variety of cellular components, and concentrations reaching 200 microM have been reported in some tissues. In this study, we show that HOCl interacts with the skeletal sar...
متن کاملHypochlorous acid inhibits Ca21-ATPase from skeletal muscle sarcoplasmic reticulum
Favero, Terence G., David Colter, Paul F. Hooper, and Jonathan J. Abramson. Hypochlorous acid inhibits Ca21ATPase from skeletal muscle sarcoplasmic reticulum. J. Appl. Physiol. 84(2): 425–430, 1998.—Hypochlorous acid (HOCl) is produced by polymorphonuclear leukocytes that migrate and adhere to endothelial cells as part of the inflammatory response to tissue injury. HOCl is an extremely toxic ox...
متن کاملEffect of chemical modification on the crystallization of Ca2+-ATPase in sarcoplasmic reticulum.
The influence of chemical modification on the morphology of crystalline ATPase aggregates was analyzed in sarcoplasmic reticulum (SR) vesicles. The Ca2+-ATPase forms monomer-type (P1) type crystals in the E1 and dimer-type (P2) crystals in the E2 conformation. The P1 type crystals are induced by Ca2+ or lanthanides; P2 type crystals are observed in Ca2+-free media in the presence of vanadate or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Zeitschrift fur Naturforschung. Section C, Biosciences
دوره 40 11-12 شماره
صفحات -
تاریخ انتشار 1985